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Abstract 
Space is an exciting environment attracting enough players to soon exceed the ability to effectively track 

objects manually. We will need to update our space traffic systems to use artificial intelligence as 

supplements or replacements for human operators to achieve continued steady access to space. 

Computer vision will be a crucial component of sensing assets for space domain awareness conducted in 

orbit. We can extend this space traffic control network for planetary defense against near-earth objects 

that could pose impact risks. Besides tracking satellites and debris in Earth orbits, it can also provide 

traffic information for cislunar assets. 

If the Space Force operates these assets, they can also be used as early warning sensors for terrestrial 

actions that would be harder to detect if only looking for infrared flashes. Using computer vision space 

domain awareness algorithms as a base, we can add additional algorithmic models suggesting 

recommended maneuvers to operators. With further development, these algorithms can conduct 

maneuvers themselves. They can also run sub-missions for the Space Force. As we design these systems, 

we must avoid common ethical traps and decisions that would erode trust in the algorithms among 

operators and civilian regulators or oversight authorities. 

Background 
With the proliferation of space objects in Earth’s orbit,[1] we will soon exceed the ability to effectively 

track objects manually. We will eventually reach a point where space traffic control will require 

automated maneuvering to avoid collisions. Further, continued automation will be necessary for 

planetary defense, early warning for terrestrial and aerial assets, and making decisions for orbital 

actions. The challenges associated with Earth orbits will compound as we enter cislunar space with many 

unstable orbits and distances so vast that tracking objects becomes even more complex.[2] Some of 

these tasks can be handled by scripts and standard automation. However, because of the inherently 

dynamic nature of space, some of this will need to be handled by intelligent machinery trained on 

general data but free to act as it sees fit (within acceptable parameters).[3], [4] 

Computer vision for object recognition and classifying new objects are examples of tasks that cannot 

be merely scripted. In the space environment, many objects can be classified based on common 

characteristics. However, debris and new objects without previous reference imagery will require a 

certain level of inference based on previous information. Humans are very good at performing abstract 

recognition like this. However, because of the speed and volume with which debris fields may manifest 

in Kessler-Syndrome-like manners,[5] human operators will be unable to keep pace with the conditions if 

unaided by machines. Plausible machine-assisted methods include supervised or unsupervised machine 

learning and other methods, which will be discussed in this paper. Regardless of the methods used, the 

algorithms employed will need to be speedy, reliable, and trustable. Furthermore, in many cases, the 

decisions made by those algorithms need to be explained in a way that will allow a human operator to 

understand if an algorithm is acting based on junk data. The algorithms must also be transparent 

enough to enable an operator to know if it is going outside the bounds of the law or what is desired 

within the diplomacy, information, military, and economy realms of the decision-making framework.[6], 

[7] 
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Image Recognition and Computer Vision 

How Image Recognition and Computer Vision Operate 
Image recognition has commercial applications today in optical character recognition for scanning 

documents[8] and translating signs.[9] It works as facial recognition for tagging people in social media 

posts[10] and object recognition to determine what is in a picture.[11] It also gives situational awareness 

information in the still-developing field of self-driving cars.[12]–[16] 

Image recognition and, more broadly, computer vision operate by various mechanisms, depending on 

the system. The most common methods with high accuracy involve training an algorithm with pre-

existing datasets. The algorithm types with the most promise for space-based space domain awareness 

include image segmentation, object detection, edge detection, pattern detection, image classification, 

and feature matching.[14] Exactly how each of those algorithms operates is beyond the scope of this 

article but may be studied more in future articles. 

Some challenges for space-based computer vision include solar glare, atmospheric distortion, 

distance, irregularly shaped objects, and new objects with no prior reference.[2] If an object is 

silhouetted against the sun or Moon, that will form a different visual signature. If an object reflects 

sunlight directly into the sensor, it can overexpose the sensor and potentially damage it. If looking for 

activity within the atmosphere, lensing, Rayleigh Scattering, clouds, and shimmer can affect signal 

processing image quality. Because most space objects will experience negligible atmospheric drag, they 

are typically designed in ways that present significantly different profiles depending on their 

orientations relative to an observer. These changing profiles can make classification challenging. In orbit, 

most objects will be thousands of kilometers apart. As we extend into cislunar space, the distance 

involved increases by one to two orders of magnitude. If we operate these sensors for planetary 

defense, we move into the billions of kilometers, looking at between 1 and ≈150 AU.[17]–[20] 

 

Satellites 
One use of computer vision and image recognition is for satellite space traffic control. These are the 

most straightforward objects to detect, by nature of their length in the 10 cm to 109 m range.[21], [22] 

Commercial and science payloads typically have multiple reference photos that can be fed into an 

algorithm to detect the satellite on sight. Military and reconnaissance payloads by nature of their 

secrecy would necessitate an adaptive supervised learning method of image recognition that is regularly 

updated and verified with a human. 

Maintaining separate training, validation, and test sets will be both challenging and yet vital to 

allowing image recognition to work in this environment.[23] These data sets and models generated from 

them will need to be updated frequently to prevent model drift.[24] Each new launch represents a new 

payload (or typically multiple payloads)[25], [26] necessitating the update of the catalog and image 

recognition models. These updates are essential after collisions, discarded staging, and other debris 

enter orbit. 

While image recognition will be a powerful tool for identifying objects, it can also determine their 

trajectories to update the satellite catalog maintained by the 18th Space Control Squadron.[27] One easy 

way to do this is to calculate the object’s parallax against the celestial background over a few recording 

frames.[28] For objects in low Earth orbit, parallax may be possible through stereoscopic imaging in a 

single satellite. Cislunar space may require multiple spacecraft for effective stereoscopy. Comparison 

references can be made using either parallax method, but against the Earth or Moon for orientation. 
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Depending on the field of view and other objects in the frame, distance could also be measured through 

parallax. That can be assisted by the use of additional ranging sensors for accuracy. Such sensors include 

LIDAR and microwave radar, although power requirements and time delays become technical hurdles at 

cislunar distances and beyond.[2] 

 

Debris 
While satellites typically refer to intentionally launched and orbiting spacecraft, the term technically 

encompasses all objects orbiting a body[29] and includes debris. However, practically speaking, space 

debris is a collective term referencing orbital objects that serve no functional purpose. This includes lost 

tool bags, rocket bodies, paint chips, decommissioned satellites, pieces from satellite break-ups, and 

meteoroids.[30], [31] 

By their nature, debris will have irregular shapes that will likely not have perfect matches in any 

database. Further, many objects will be so small that they cannot be effectively tracked by ground-

based radar.[32] Debris-tracking is an area where on-orbit optical tracking and mmWave radar can 

significantly improve space domain awareness. In addition to size and shape disparities, debris 

dispersion patterns and satellite maneuvering could result in multiple blind spots where objects hide 

behind each other relative to the sensor (ground-based or orbital). This can be mitigated through 

continuous observation and overlapping lanes of coverage from a variety of orbits. 

 

Early Warning 
Satellites have historically been used for and continue to be used for multiple early warning systems 

directed at the ground.[33], [34] While intercontinental ballistic missiles and other rockets have been the 

primary detection mission for these satellites, there are additional possibilities with improved 

automation. 

Hypersonic Aircraft and Projectiles 
As our sensors continue to improve, detecting hypersonic aircraft should be the easiest since they still 

require considerable thrust, which will be hot and reasonably obvious with existing infrared detection 

systems.[35] However, their proposed low-altitude flight profile could represent a challenge cleaning the 

heat signature from the rapidly moving background of the ground below. That would be a task well-

suited to a variety of artificial intelligence computer vision systems. This is also a task that could 

potentially be accomplished with orbital radar. However, this would likely require significantly more 

power than merely passive detection. It would still require considerable signal processing to remove the 

ground below to a degree much higher than with infrared sensing, where propulsion systems produce 

far more heat than background targets.[36]–[39] 

A slightly more challenging but still important task would be to track hypersonic projectiles, such as 

those generated from railguns and coilguns. Per publicly available test data, such projectiles can travel 

up to 100 miles without any additional propulsion.[40] This means there could be minimal warning for 

ground assets without persistent overhead imaging. Further, since these projectiles are not actively 

propelled in-flight, their infrared signatures will be negligible. The air will still be heated around them if 

they travel fast enough, but detecting them would require much more advanced signal processing than 

is required to detect missile launches. Using orbital mmWave radar sensors could be a way to see 

through clouds.[41] However, we would still have to perform a large amount of signal processing to 

remove background noise produced by radar reflections off ground features and slower-moving objects. 



 

5 
 

 

Planetary Defense 
Another huge benefit for orbital assets is planetary defense. We have a lot of blind spots using only 

ground-based sensors. If we place radio and optical telescopes at various stable Lagrange points, we can 

substantially increase the area we cover in tracking near-earth asteroids.[17], [42] 

After placing the observatories, we then have to filter all the objects we track. We have to classify 

them by type, distance, and classic orbital elements, along with their risk of impact. Because of the 

sheer volume of comets and asteroids in our solar system (> 1.1 million),[43] we need to classify these 

objects using some form of artificial intelligence. Otherwise, it will take far too long and be prohibitively 

expensive to catalog all items that could one day pose an existential threat to life on Earth.[44] 

Planetary defense is once again a great place for computer vision systems. The time scale involved 

allows for more options here than with satellite traffic, including handling algorithms on the ground 

where it is much easier to upgrade computing power and algorithm accuracy. 

Object Avoidance 
Artificial intelligence will shine with object avoidance. Because space is a complicated environment full 

of moving objects, a well-trained artificial intelligence algorithm can take all known data about space 

traffic and conduct analyses of multiple course-correction options within a fraction of a second. This 

data includes calculations that would take a human minutes to calculate by hand for a single possible 

path.[45] Once the calculations are made, alongside probabilities of success and second-order collisions, 

there are two possibilities. The algorithm can issue maneuver recommendations or conduct 

autonomous actions. Both options will increase the amount of orbital traffic that can be safely handled, 

increasing the amount of possible activity in the commercial, exploration, and national security sectors. 

Maneuver Recommendations 
If the algorithm is used to issue maneuver recommendations, it can issue a top-three recommendation 

with success probabilities for each action. These recommendations can be presented by text, as 

graphical overlays on its path highlighting the threat, a combination of both, or in a different method. 

There are already a multitude of automated warning systems in use in non-space environments. 

Cars have blind-spot monitoring systems that issue audible or visible warnings when drivers try to 

merge with a car in their path.[46] Most commercial jets have terrain avoidance and warning systems that 

issue audio alerts and a recommended action, “WHOOP WHOOP PULL UP,” as an example.[47] 

We can design something similar in our space environment. A visual alert with recommendations, like 

many video games use in tutorials or during specific sections of gameplay, could form the basis of this 

design.[48] Recommended path corridors could take a similar form to synthetic vision setups in 

commercial aviation glass cockpits, identifying flight-path markers, danger areas, and recommended 

actions.[49] Before deciding on an exact form, current system operators, user experience designers, 

graphics designers, and data visualization experts should all be consulted. These consultations will 

ensure the resulting software solution is usable, looks good, and communicates the necessary 

information quickly and effectively. 
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Autonomous Action 
Artificial intelligence can do a lot more than simply suggest possible actions. Properly trained algorithms 

can take action on their own. This would decrease reaction time[50], [51] and allow for the most efficient 

use of orbital slots. This also opens up many opportunities requiring short evaluation and reaction times. 

However, there are also limits to what can be accomplished autonomously. Amazon and Tesla are two 

companies that have heavily relied on automation but also found limits to what the machines can 

accomplish relative to humans.[52] The exact split in capabilities and duties between automation and 

humans will vary considerably depending on what is technologically possible at any given time. 

Maneuver 
The most obvious place to start is with autonomous maneuvering. Since artificial intelligence can 

already conduct analyses to choose the best options by the probability of success, why not allow that 

algorithm to execute the best option on its own? Computers can execute maneuvers with minimal delay 

or reaction time. This allows for satellites to be considerably closer together. SpaceX has already 

equipped its Starlink system with automated collision avoidance maneuvering capabilities.[53] 

Autonomous collision avoidance is a feature that will need to become standard as we launch more and 

more objects into space, with estimates projecting over 100,000 satellites being launched within the 

next decade.[54] 

 As we design systems that autonomously maneuver, we need to design them with “rules of the space 

lanes” similar to rules of the road and right of way on the seas and in the air. However, space inherently 

has several key differences. First, many objects are effectively “dead in the water.” Second, a single 

change will affect many objects in a ripple effect. Third, while some satellites can maneuver with ease, 

others maneuver slowly. Finally, orbits do not behave like terrestrial pathways due to orbital 

perturbations and a lack of air resistance.[55] These factors need to be considered when crafting both 

rules of the roads and autonomously maneuvering satellites. 

Generative Adversarial Networks (GANs)[56] within a digital twin[57] framework would likely be the best 

training ground for developing algorithms capable of choosing and executing the best maneuvers. 

Specifically for applications such as precision station-keeping, satellite chasing, collision avoidance, 

docking, and quickly charting paths through cislunar space with its bizarre gravitational effects.[2] After 

the framework is developed, an outgrowth of that algorithm should be built to handle computer vision 

to know its actual environment and natural language processing to effectively interpret desired end-

states from constellation operators. That is correct, constellation operators. Humans will not be 

operating individual satellites on the scale that humanity is moving towards, except in rare 

circumstances. Most interactions will be with constellations or clusters of satellites since the algorithms 

can do the heavy lifting of the actual maneuvers. 

Repair 
What happens when a satellite breaks down on-orbit, in cislunar space, or beyond? How can it be 

returned to operational status? The traditional method has been to send humans to conduct spacewalks 

to repair the malfunctioning satellite — if it is in low earth orbit.[58] Beyond that, if the operators cannot 

affect a repair remotely, it becomes a dead object. Further, human astronauts cost a considerable sum 

of money to place correctly for a repair. For example, the Hubble Space Telescope repair estimate in 

1999 was $205 million.[59] If we want efficient repairs, we need to remove humans from the equation. 
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The most recently demonstrated remote repair capability is from the Space Logistics MEV-2, where 

MEV-2 maneuvered onto Intelsat 10-02, allowing itself to serve as a maneuvering unit, extending the 

Intelsat 10-02’s service life by five years.[60] As technology advances, repair missions like this can become 

commonplace, eventually handled entirely by artificial intelligence algorithms. Further, some automated 

repair mechanisms can be built into the satellite before launch, allowing the satellite to service itself for 

minor repairs as needed and instructed by the governing algorithm. 

Defense 
Space is a contested environment.[61] It is easy enough to recognize a need to avoid accidentally hitting 

other operational satellites and debris. However, what happens if someone actively fires on our 

systems? Anti-satellite activity can take the shape of kinetic attacks from Earth (land, sea, or air-

launched), kinetic attacks from orbit (throwing projectiles), signal jamming, sensor blinding, 

maneuvering to a satellite to rip it apart with a robotic arm, or even ramming one satellite into 

another.[62] 

Protecting against aggressive action is a necessary component of keeping national defense assets 

operational. Protection could be handled by humans but would become costly and prone to error. With 

our goal to be a lean and agile force,[63] this needs to be handled computationally. Orbital defense is a 

prime environment to use a GAN algorithm. We can put in as much information as we have and have 

algorithms fight each other to learn from the fight and become even better so that when something 

occurs on-orbit, they can immediately execute the best defense. While GANs immediately stand out, 

other reinforcement learning models could also achieve the same objectives. 

Using a system like this will save time and money and be a valuable force multiplier. Further, because 

such algorithms can be self-contained within an orbital asset, it improves survivability, even if the 

satellite is under electronic attack or a controlling ground station is incapacitated. That means that the 

combination of quicker reaction times and self-contained programming will allow the asset to stay 

active much longer in a degraded environment. 

Offense 
Offense has no place in the areas of commercial space or space exploration. However, this is an arena in 

which the Space Force must be prepared to operate. While we would prefer to deter aggressive action 

in space, should conflict break out, a key component of maneuver warfare is offensive action against 

designated enemy targets, in accordance with the laws of armed conflict.[64], [65] 

The same features that make GAN algorithms attractive for defense make them equally attractive for 

offense. Other reinforcement learning methods could also work. For example, deep learning, like was 

used for AlphaGo, is another possibility.[66] Algorithms need to account for orbital maneuvering in 

evasive action, possible sensor blinding efforts,[67] and distraction countermeasures like chaff[68] in 

addition to any possible direct actions or counter actions occurring from the object being targeted for 

offensive action. 

Ethics 
Automation raises many ethical questions. For centuries, humans have been concerned about how 

automation may negatively impact jobs.[69] While some jobs are susceptible to automation replacing 

them, many times, the same automation that usurped a job created new categories of jobs or changed 

the way the old job functioned. For example, when automated teller machines (ATMs) were introduced 

in the 1980s, the number of human tellers did not decrease. The number increased. However, the 
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human teller’s job changed from counting cash to being a customer service representative and 

salesperson.[69, pp. 6–7] 

Besides the obvious ethical questions related to jobs, there are further questions about algorithmic 

bias and decision making. The trolley problem is a classic ethical allegory for comparing ethical 

standards.[70] Many variations on the theme exist. For simplicity, assume a trolley is on a track headed 

toward several workers who cannot escape. You can switch the trolley to the only alternate track, 

thereby killing only one worker, or do nothing and allow the trolley to kill several workers. Your ethical 

framework determines the solution you choose and your rationale for that choice. Two example 

frameworks are whether you consider a net human gain to be best or doing no active harm to be best. 

The trolley problem is hard enough for humans to solve. A prominent artificial intelligence YouTuber 

taught an algorithm how to solve the trolley problem.[71] In the process, she uncovered a complicated 

web of how the biases of training sets and the unconscious biases of programmers influence the final 

result.[71, Secs. 10 & 12] This has implications on-orbit for algorithmic defensive and offensive operations. 

When defending an asset, the algorithm needs to correctly identify threats. When counter-attacking or 

directly attacking, targets need to be correctly chosen. Mis-identification can cause grave damage to 

national security in a space battle if it results in a friendly-fire incident. It even has the potential to go 

beyond merely damaging assets and move to illegal territory that could be considered a war crime if the 

algorithm chooses to engage a target that is not a legitimate military objective. That itself opens another 

layer of ethical questions in determining who to hold to account for such actions. 

The trolley problem, the importance of classification accuracy, biases, unintended consequences, 

algorithmic accountability, and more all underpin the growing field of ethics research in artificial 

intelligence. These questions are so important that the first United States Chief Data Scientist wrote and 

published an entire book on the subject.[72], [73] He also intentionally priced it as free to distribute to as 

many people as possible.[74] A key takeaway from his book is the importance of developing an ethics 

checklist tailored to each industry and company, or organization. This checklist should be used when 

developing and updating all artificial intelligence algorithms. The levels of ethical thought required vary 

according to the level of war being fought. Strategic levels require the most thought, and tactical levels 

require only rough rubrics. Even outside of algorithms, the importance of ethical thought is being 

strongly considered within the armed forces.[75] 

Further, the Department of Defense has thought through and published five guiding principles for 

artificial intelligence in combat and non-combat roles.[76] When designing an artificial intelligence 

system, we must be responsible, equitable, use traceable techniques, create reliable systems, and 

deploy properly governable systems.[76] Therefore, developing these systems must follow appropriate 

rules from the Department of Defense, in addition to any space domain-specific rules the Space Force 

develops. 

Algorithmic Checks and Balances 
Related to the ethics of ensuring algorithms are making the correct decisions is verifying those 

assurances. Verification can take several forms. The first form is regular validation testing to ensure the 

models have not drifted.[77] That means testing the models with a recent sample of real-world data to 

ensure that the statistical decisions match what was achieved in training. Machine learning engineers 

will need to regularly perform validation testing to prevent undesirable model drift. 
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Another idea is to regularly perform competitions between different algorithms and human operators 

to see who performs the best and why. Competitions could take the form of a regular portion of Space 

Flag exercises. From those results, the existing systems can be updated with lessons learned. 

Humans have displayed algorithm aversion in many situations.[78] This takes the form of preferring 

humans over algorithms, even when algorithms perform better than humans. A key component to 

making computational supplements to humans work is getting those humans to trust the computer’s 

decisions. For humans to trust an algorithm, they need to be confident that the algorithm has the same 

information as the human, the same goals, and a compatible decision matrix, in addition to a high 

statistical likelihood of success. 

One facet of this discussion is the concept of algorithmic black boxes that absorb information and then 

spit out decisions in a way that makes no sense to humans.[79] While this approach is common in 

machine learning environments, it has significant risks to operational success.[80] Many people operating 

in the space of artificial intelligence operate under a “Bigger is better” mentality, meaning that the more 

complicated the model, the better it will perform.[80] However, that assumption is not necessarily valid. 

Models designed with inherent interpretability perform within a margin of error of black-box type 

systems.[80], [81] Because their performance is so close to large black-box models, small and interpretable 

systems should be the default. Smaller interpretable systems can more readily have their processing 

handled onboard an orbiting system (reducing reaction times) and significantly increase trust for 

operators and civilian oversight of any military operations using these systems. 

Conclusion 
Image recognition and computer vision have many applications for orbital assets in commercial and 
national security environments. These systems can be used to inform human operators, provide early 
warning, and issue maneuver recommendations. They can also function as modular algorithms, feeding 
into larger algorithms for autonomous object avoidance, autonomous repair, and even conducting some 
level of autonomous defensive and offensive actions on-orbit. The sensors and information needed for 
success vary depending on the orbital regime, expected threats and targets, and expected actions. 
Developing these systems requires an interdisciplinary team of statisticians, machine learning engineers, 
ethicists, lawyers, and satellite operators. Once these systems are operational, they open the door for 
an exponential increase in human activity on-orbit and beyond Earth’s gravitational influence. 
 

Second Lieutenant David M. Vermillion, USSF, is currently a student at the 533d Training Squadron, 
Space Training and Readiness Delta (Provisional), Vandenberg SFB, CA. This paper represents solely 
the author’s views and do not necessarily represent the official policy or position of any Department or 
Agency of the U.S. Government. If you have a different perspective, we’d like to hear from you. 
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